

TRANSFIELD SERVICES PTY. LTD.

EastLink Ventilation Stack Emission Monitoring Report April - June 2013

Submitted to:

Transfield Services Pty. Ltd., EastLink Operations Centre, 2 Hillcrest Avenue, Ringwood, 3134

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Report Number. 097613024-030-R-Rev0 **Distribution:**

- 1 Electronic Copy Transfield Services Pty. Ltd.
- 1 Hard Copy Transfield Services Pty. Ltd.
- 1 Hard Copy- Golder Associates Pty. Ltd.

Record of Issue

Company	Client Contact	Version	Date Issued	Method of Delivery
Transfield Services Pty. Ltd., EastLink Operations Centre, 2 Hillcrest Avenue, Ringwood, 3134	Ms. Alex Monson	Revision 0	28/08/2013	Electronic/Post

Table of Contents

1.0	INTRODUCTION					
2.0	DISCH	ARGES TO AIR	1			
3.0	VENTI	ATION STACK MONITORING PARAMETERS	3			
4.0	METHO	DDS	3			
	4.1	PM _{2.5}	3			
	4.2	PM ₁₀	3			
	4.3	Carbon Monoxide	4			
	4.4	Oxides of Nitrogen	4			
	4.5	Stack Velocity	4			
5.0	MEASU	JREMENT UNCERTAINTY	4			
6.0	VENTI	ATION STACK EMISSION MONITORING PERIOD: 01/04/2013 – 30/04/2013	5			
	6.1	Data Capture	5			
	6.2	Results	6			
	6.2.1	PM _{2.5}	6			
	6.2.2	PM ₁₀	7			
	6.2.3	Carbon Monoxide	8			
	6.2.4	Oxides of Nitrogen	9			
	6.2.4.1	Nitric Oxide	9			
	6.2.4.2	Nitrogen Dioxide	10			
	6.2.5	Stack Velocity	11			
	6.3	Data Validation and Exceptions	12			
7.0	VENTI	ATION STACK EMISSION MONITORING PERIOD: 01/05/2013 – 31/05/2013	14			
	7.1	Data Capture	14			
	7.2	Results	14			
	7.2.1	PM _{2.5}	14			
	7.2.2	PM ₁₀	15			
	7.2.3	Carbon Monoxide	16			
	7.2.4	Oxides of Nitrogen	17			
	7.2.4.1	Nitric Oxide	17			
	7.2.4.2	Nitrogen Dioxide	18			

	7.2.5	Stack Velocity	20
	7.3	Data Validation and Exceptions	21
8.0	VENTI	LATION STACK EMISSION MONITORING PERIOD: 01/06/2013 – 30/06/2013	23
	8.1	Data Capture	23
	8.2	Results	23
	8.2.1	PM _{2.5}	23
	8.2.2	PM ₁₀	24
	8.2.3	Carbon Monoxide	25
	8.2.4	Oxides of Nitrogen	26
	8.2.4.1	Nitric Oxide	26
	8.2.4.2	Nitrogen Dioxide	27
	8.2.5	Stack Velocity	29
	8.3	Data Validation and Exceptions	30
9.0	DISCU	ISSION	32
	9.1	Comparison with Licence Limits	32
TAB	LES		
TAB	LES		
		charges to Air	
		asurement Uncertainty	
		a Capture Statistics - 1 Hour Averages	
		2.5 Mass Rate Percentiles (1 Hour Average)	
		10 Mass Rate Percentiles (1 Hour Average)	
Tabl	e 6: Car	bon Monoxide Mass Rate Percentiles (1 Hour Average)	8
Tabl	e 7: Nitr	ic Oxide Mass Rate Percentiles (1 Hour Average)	g
Tabl	e 8: Nitr	ogen Dioxide Mass Rate Percentiles (1 Hour Average)	10
Tabl	e 9: Dat	a Exceptions - Eastern Ventilation Stack: April 2013	12
Tabl	e 10: Da	ata Exceptions - Western Ventilation Stack: April 2013	12
Tabl	e 11: Da	ata Capture Statistics - 1 Hour Averages	14
Tabl	e 12: PN	M _{2.5} Mass Rate Percentiles (1 Hour Average)	14
Tabl	e 13: PN	M ₁₀ Mass Rate Percentiles (1 Hour Average)	15
Tabl	e 14: Ca	arbon Monoxide Mass Rate Percentiles (1 Hour Average)	16
		tric Oxide Mass Rate Percentiles (1 Hour Average)	
		trogen Dioxide Mass Rate Percentiles (1 Hour Average)	
		ata Exceptions - Eastern Ventilation Stack: May 2013	
Tabl	e 18: Da	ata Exceptions - Western Ventilation Stack: May 2013	21

Table 19: Data Capture Statistics - 1 Hour Averages	23
Table 20: PM _{2.5} Mass Rate Percentiles (1 Hour Average)	23
Table 21: PM ₁₀ Mass Rate Percentiles (1 Hour Average)	24
Table 22: Carbon Monoxide Mass Rate Percentiles (1 Hour Average)	25
Table 23: Nitric Oxide Mass Rate Percentiles (1 Hour Average)	26
Table 24: Nitrogen Dioxide Mass Rate Percentiles (1 Hour Average)	27
Table 25: Data Exceptions - Eastern Ventilation Stack: June 2013	30
Table 26: Data Exceptions - Western Ventilation Stack: June 2013	30
Table 27: Maximum (1 Hour Average) Mass Rate (01/04/2013 - 30/06/2013)	32
Table 28: Data Capture Year to Date (%)	32
Table 29: Ventilation Stack Emissions 1/072012 – 30/06/2013 (tonnes/year)	32
FIGURES	
Figure 1: Ventilation Stack Locations	
Figure 2: PM _{2.5} Mass Rate (1 Hour Average)	6
Figure 3: PM ₁₀ Mass Rate (1 Hour Average)	7
Figure 4: Carbon Monoxide Mass Rate (1 Hour Average)	8
Figure 5: Nitric Oxide Mass Rate (1 Hour Average)	9
Figure 6: Nitrogen Dioxide Mass Rate (1 Hour Average)	10
Figure 7: Stack Velocity (1 Hour Average)	11
Figure 8: PM _{2.5} Mass Rate (1 Hour Average)	15
Figure 9: PM ₁₀ Mass Rate (1 Hour Average)	16
Figure 10: Carbon Monoxide Mass Rate (1 Hour Average)	17
Figure 11: Nitric Oxide Mass Rate (1 Hour Average)	18
Figure 12: Nitrogen Dioxide Mass Rate (1 Hour Average)	19
Figure 13: Stack Velocity (1 Hour Average)	20
Figure 14: PM _{2.5} Mass Rate (1 Hour Average)	24
Figure 15: PM ₁₀ Mass Rate (1 Hour Average)	25
Figure 16: Carbon Monoxide Mass Rate (1 Hour Average)	26
Figure 17: Nitric Oxide Mass Rate (1 Hour Average)	27
Figure 18: Nitrogen Dioxide Mass Rate (1 Hour Average)	28
Figure 19: Stack Velocity (1 Hour Average)	29
Figure 20: Ventilation Stack Emissions as Percentage of Licence Limit (1/06/2012 - 30/07/2013)	33

APPENDICES
APPENDIX A
Limitations

1.0 INTRODUCTION

EastLink is a 39 kilometre motorway running between Donvale in Melbourne's north-east to Frankston in Melbourne's south-east with two tunnels under the Mullum Mullum Valley. Transfield Services, who are responsible for operation and maintenance of the road, commissioned Golder Associates Pty. Ltd. to provide continuous emission monitoring services for the EastLink motorway project. The services provided include:

- Operations and maintenance services for the EastLink ventilation stack continuous emission monitoring systems (CEMS)
- NATA endorsed emission monitoring reports.

Monitoring commenced on the 29th June, 2008 with the opening of the EastLink motorway. Results for the sampling period 1st April, 2013 to 30th June, 2013 inclusive are contained in the following report.

The work was conducted under the following Transfield Services Work Order numbers:

Month	Western Stack	Eastern Stack
April	509926	509927
May	514407	514410
June	519561	519562

Your attention is drawn to the document - "Limitations" (LEG04, RL1), which is included in Appendix A of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by Golder, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing. We would be pleased to answer any questions the reader may have regarding these 'Limitations'.

2.0 DISCHARGES TO AIR

EastLink has discharges to air servicing two road tunnels. Discharge Point No. 1 (DP1) services the inbound (Melba) tunnel and Discharge Point No. 2 (DP2) services the outbound (Mullum Mullum) tunnel.

The locations of the discharges to air are described in Table 1 and presented in Figure 1.

Table 1: Discharges to Air

Discharge Point No.	Station Name	Location		
1	Western ventilation stack	Western end of inbound tunnel (Melba) - Donvale		
2	Eastern ventilation stack	Eastern end of outbound tunnel (Mullum Mullum) – Ringwood		

Monitoring equipment is housed in temperature controlled cabinets located at the base of each of the ventilation stacks. Particulate matter and gaseous sample inlets are installed inside the plenum chamber of each of the ventilation stacks.

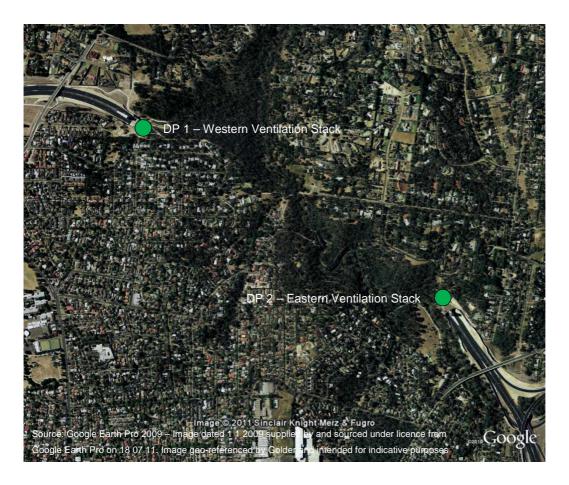


Figure 1: Ventilation Stack Locations

3.0 VENTILATION STACK MONITORING PARAMETERS

The following parameters are monitored continuously, with averages logged at 5 minute intervals:

- Particulate matter with an equivalent aerodynamic diameter less than 2.5 microns (PM_{2.5})
- Particulate matter with an equivalent aerodynamic diameter less than 10 microns (PM₁₀)
- Total oxides of nitrogen (NO_x)
- Nitric oxide (NO)
- Nitrogen dioxide (NO₂)
- Carbon monoxide (CO)
- Stack velocity
- Stack temperature
- Ambient pressure.

4.0 METHODS

4.1 PM_{2.5}

PM_{2.5} concentrations in the tunnel ventilation stacks are determined using 1400 Series Tapered Element Oscillating Microbalance (TEOM) analysers. Sample inlets are located inside the plenum chamber of each ventilation stack.

Exhaust gas is drawn through a $PM_{2.5}$ size selective inlet (PM_{10} WINS head fitted with a $PM_{2.5}$ sharp cut cyclone (SCC)) at 1 m³/h. The flow is then isokinetically split into two streams; 1 l/min stream which passes through the filter on the mass transducer and a 15.7 l/min bypass stream.

The sample stream is heated to 50°C to maintain a low and therefore relatively constant humidity.

Measurements are made in real-time (2 s intervals) with the 5 minute averages logged. 1 hour averages are then calculated from the logged data.

The PM_{2.5} monitoring method is based on the requirements of Australian Standard AS 3580.9.8, "Methods for Sampling and Analysis of Ambient Air: Determination of Suspended Particulate Matter – PM_{10} Continuous Direct Mass Method Using a Tapered Element Oscillating Microbalance Analyser".

4.2 PM_{10}

 PM_{10} concentrations in the tunnel ventilation stacks are determined using 1400 Series Tapered Element Oscillating Microbalance (TEOM) analysers. Sample inlets are located inside the plenum chamber of each ventilation stack.

Exhaust gas is drawn through a PM_{10} size selective inlet (PM_{10} WINS head) at 1 m³/h. The flow is then isokinetically split into two streams; 1 l/min stream which passes through the filter on the mass transducer and a 15.7 l/min bypass stream.

The sample stream is heated to 50°C to maintain a low and therefore relatively constant humidity.

Measurements are made in real-time (2 s intervals) with the 5 minute averages logged. 1 hour averages are then calculated from the logged data.

The PM₁₀ monitoring method is based on the requirements of Australian Standard AS 3580.9.8, "Methods for Sampling and Analysis of Ambient Air: Determination of Suspended Particulate Matter – PM₁₀ Continuous Direct Mass Method Using a Tapered Element Oscillating Microbalance Analyser".

4.3 Carbon Monoxide

Carbon monoxide concentrations in the tunnel ventilation stacks are determined by infra-red gas filter correlation analysers.

Automatic calibrations are carried out daily against a NATA certified reference gas mixture. Manual calibrations are conducted at one month intervals.

The carbon monoxide monitoring method is based on the requirements of Australian Standard AS 3580.7.1, "Determination of Carbon Monoxide – Direct Reading Instrumental Method".

4.4 Oxides of Nitrogen

Oxides of nitrogen concentrations in the tunnel ventilation stacks are determined by chemiluminescence gas analysers.

Automatic calibrations are carried out daily against a NATA certified reference gas mixture. Manual calibrations are conducted at one month intervals.

The oxides of nitrogen (NO, NO₂ and NO_x) monitoring method is based on the requirements of Australian Standard AS 3580.5.1, "Determination of Oxides of Nitrogen – Chemiluminescence Method".

4.5 Stack Velocity

Stack gas velocity was determined using an optical flow sensor that complies with USEPA Code of Federal Regulations (CFR 40) Part 75, "Continuous Emission Monitoring" requirements.

5.0 MEASUREMENT UNCERTAINTY

Table 2: Measurement Uncertainty

Table 21 medeal ement emeritantly							
Parameter	Method	Estimated Uncertainty					
PM ₁₀	TEOM	± 5%					
PM _{2.5}	TEOM	± 5%					
NO, NO ₂ , NO _X	Chemiluminescence	± 10%					
СО	Infra-red gas filter correlation	± 10%					
Stack velocity	Optical flow sensor	± 0.1 m/s or 5% of reading, whichever is greater					
Ambient temperature	Thermocouple (TEOM)	± 2°C					
Ambient pressure	TEOM pressure transducer	± 1.5%					

6.0 VENTILATION STACK EMISSION MONITORING PERIOD: 01/04/2013 – 30/04/2013

6.1 Data Capture

Data capture is defined as the number of valid data periods collected divided by the number of available data periods. Valid data excludes periods where the instrument is unavailable due to calibration and maintenance and excludes periods where the data has been rejected due to quality assurance/data validation procedures.

The data capture statistics for the reporting period 1st April to 30th April, 2013 are shown in Table 3. Averages were only collected for those periods where the 5 minute data constituted 75% data capture.

Section 6.3 provides further information on the reasons for invalid data periods.

Table 3: Data Capture Statistics - 1 Hour Averages

Parameter	Station	Collected Periods	Available Periods	Data Capture
PM _{2.5}	Eastern	718	720	99.7%
	Western	718	720	99.7%
PM ₁₀	Eastern	718	720	99.7%
	Western	719	720	99.9%
NO NO	Eastern	654	720	90.8%
NO, NO ₂	Western	689	720	95.7%
со	Eastern	646	720	89.7%
	Western	689	720	95.7%

6.2 Results

6.2.1 PM_{2.5}

PM_{2.5} was continuously monitored and 5 minute averages logged. The 5 minute average data was then transformed to 1 hour averages for reporting.

 $PM_{2.5}$ (1 hour average) mass rate of emission statistics for the reporting period are given in Table 4. A plot of $PM_{2.5}$ (1 hour average) mass rate of emission for the reporting period is presented in Figure 2.

Table 4: PM_{2.5} Mass Rate Percentiles (1 Hour Average)

Station		PM _{2.5} Mass Rate (kg/h) (1 Hour Average)						
Station	Maximum	99 th	98 th	95 th	90 th	75 th	50 th	
Eastern	0.35	0.26	0.24	0.21	0.18	0.15	0.052	
Western	0.46	0.29	0.27	0.20	0.16	0.115	0.048	

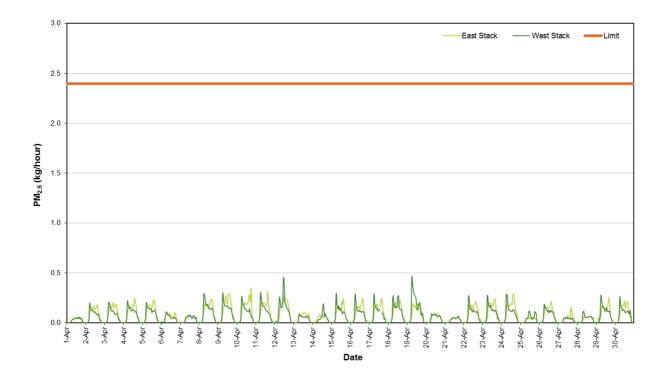


Figure 2: PM_{2.5} Mass Rate (1 Hour Average)

6.2.2 PM₁₀

 PM_{10} was continuously monitored and 5 minute averages logged. The 5 minute average data was then transformed to 1 hour averages for reporting.

 PM_{10} (1 hour average) mass rate of emission statistics for the reporting period are given in Table 5. A plot of PM_{10} (1 hour average) mass rate of emission for the reporting period is presented in Figure 3.

Table 5: PM₁₀ Mass Rate Percentiles (1 Hour Average)

Station	PM ₁₀ Mass Rate (kg/h) (1 Hour Average)						
	Maximum	99 th	98 th	95 th	90 th	75 th	50 th
Eastern	0.59	0.38	0.34	0.28	0.24	0.16	0.066
Western	0.69	0.46	0.39	0.27	0.23	0.17	0.074

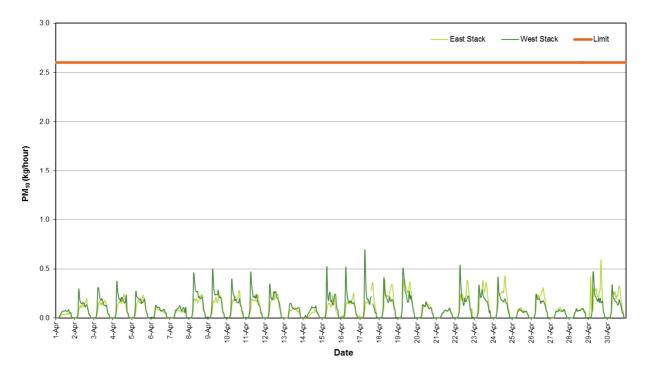


Figure 3: PM₁₀ Mass Rate (1 Hour Average)

6.2.3 Carbon Monoxide

Carbon monoxide (1 hour average) mass rate of emission statistics for the reporting period are given in Table 6. A plot of carbon monoxide (1 hour average) mass rate of emission for the reporting period is presented in Figure 4.

Table 6: Carbon Monoxide Mass Rate Percentiles (1 Hour Average)

Station	Carbon Monoxide Mass Rate (kg/h) (1 Hour Average)							
Station	Maximum	99 th	98 th	95 th	90 th	75 th	50 th	
Eastern	20	19	17	15	12	8.8	6.3	
Western	26	23	21	16	13	10	7.6	

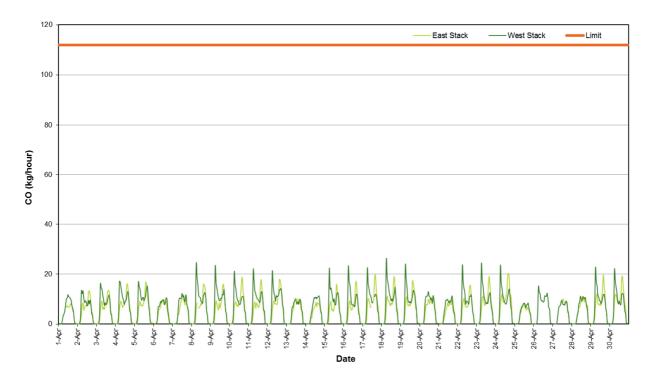


Figure 4: Carbon Monoxide Mass Rate (1 Hour Average)

6.2.4 Oxides of Nitrogen

6.2.4.1 Nitric Oxide

Nitric oxide (1 hour average) mass rate of emission statistics for the reporting period are given in Table 7. A plot of nitric oxide (1 hour average) mass rate of emission for the reporting period is presented in Figure 5.

Table 7: Nitric Oxide Mass Rate Percentiles (1 Hour Average)

Station	Nitric Oxide Mass Rate (kg/h) (1 Hour Average)						
	Maximum	99 th	98 th	95 th	90 th	75 th	50 th
Eastern	4.7	4.1	4.0	3.4	3.0	2.6	1.2
Western	5.6	5.1	4.6	3.4	2.7	2.2	1.2

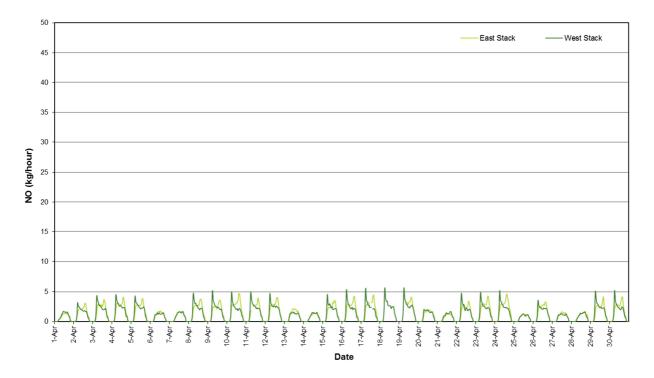


Figure 5: Nitric Oxide Mass Rate (1 Hour Average)

6.2.4.2 Nitrogen Dioxide

Nitrogen dioxide (1 hour average) mass rate of emission statistics for the reporting period are given in Table 8. A plot of nitrogen dioxide (1 hour average) mass rate of emission for the reporting period is presented in Figure 6.

Table 8: Nitrogen Dioxide Mass Rate Percentiles (1 Hour Average)

Station	Nitrogen Dioxide Mass Rate (kg/h) (1 Hour Average)							
Otation	Maximum	99 th	98 th	95 th	90 th	75 th	50 th	
Eastern	0.68	0.64	0.56	0.47	0.41	0.31	0.18	
Western	0.63	0.58	0.49	0.39	0.34	0.28	0.17	

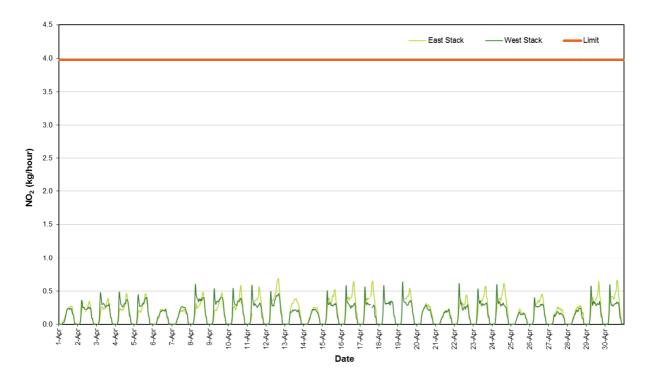


Figure 6: Nitrogen Dioxide Mass Rate (1 Hour Average)

6.2.5 Stack Velocity

The stack velocity (1 hour average) plot for the reporting period is presented in Figure 7.

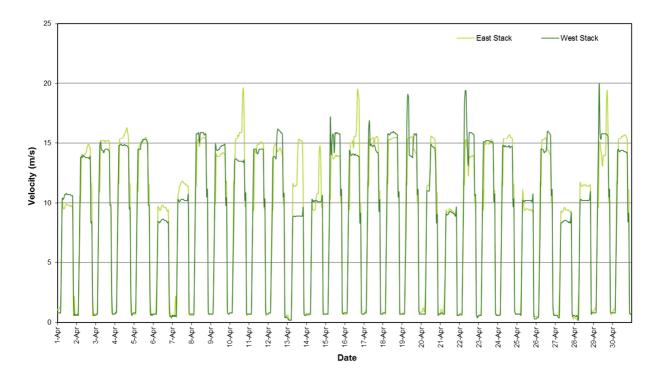


Figure 7: Stack Velocity (1 Hour Average)

6.3 Data Validation and Exceptions

Data contained in the report has been validated against performance and calibration requirements for each instrument. Data during maintenance and calibration periods has been removed from the validated data sets. Tables 9 and 10 list the data exceptions for the eastern and western ventilation stacks respectively. Data during automatic calibrations of the gaseous atmospheric contaminants has also been removed from the data sets.

Table 9: Data Exceptions - Eastern Ventilation Stack: April 2013

Start	End	Parameter	Reason
1/04/2013 0:40	1/04/2013 8:20	со	Invalid data - Span drift
1/04/2013 9:10	1/04/2013 9:30	со	Maintenance/calibration
1/04/2013 19:15	1/04/2013 19:30	со	Maintenance/calibration
2/04/2013 8:40	2/04/2013 9:45	NO, NO ₂ , NO _x	Maintenance/calibration
8/04/2013 3:30	8/04/2013 3:30	PM ₁₀	Invalid data ¹
8/04/2013 8:10	8/04/2013 8:45	со	Maintenance/calibration
11/04/2013 7:40	11/04/2013 8:30	NO, NO ₂ , NO _x	Maintenance/calibration
17/04/2013 12:05	17/04/2013 12:20	CO, NO, NO ₂ , NO _x	Maintenance/calibration
17/04/2013 12:35	17/04/2013 13:40	PM _{2.5}	Maintenance/calibration
17/04/2013 12:40	17/04/2013 14:00	PM ₁₀	Maintenance/calibration
18/04/2013 0:40	19/04/2013 8:15	NO, NO ₂ , NO _x	Invalid data - Span drift
26/04/2013 0:40	27/04/2013 9:15	со	Invalid data - Span drift

Note: 1 – In the opinion of the reviewer.

Table 10: Data Exceptions - Western Ventilation Stack: April 2013

Start	End	Parameter	Reason
1/04/2013 9:10	1/04/2013 9:20	со	Maintenance/calibration
4/04/2013 8:35	4/04/2013 8:40	PM ₁₀	Invalid data ¹
17/04/2013 14:10	17/04/2013 14:30	NO, NO ₂ , NO _x	Maintenance/calibration
17/04/2013 14:10	17/04/2013 14:30	со	Maintenance/calibration
17/04/2013 14:40	17/04/2013 15:25	PM _{2.5}	Maintenance/calibration
17/04/2013 14:50	17/04/2013 15:30	PM ₁₀	Maintenance/calibration

Note: 1 – In the opinion of the reviewer.

A number of periods occurred where $PM_{2.5}$ concentrations was greater than the corresponding PM_{10} concentration. If no valid reason was found to exclude the data, the data was left unchanged in the data set. Examples of such occurrences are listed below:

- West Ventilation stack 12/4/2013 02:30 04:00
- West Ventilation stack 14/4/2013 13:20 14:20
- West Ventilation stack 18/4/2013 11:35 13:30
- West Ventilation stack 28/4/2013 07:25 09:00
- West Ventilation stack 28/4/2013 01:30 04:00
- East Ventilation stack 06/4/2013 05:35 06:40
- East Ventilation stack 06/4/2013 17:35 18:55
- East Ventilation stack 10/4/2013 17:00 20:55
- East Ventilation stack 27/4/2013 16:45 18:40

7.0 VENTILATION STACK EMISSION MONITORING PERIOD: 01/05/2013 – 31/05/2013

7.1 Data Capture

Data capture is defined as the number of valid data periods collected divided by the number of available data periods. Valid data excludes periods where the instrument is unavailable due to calibration and maintenance and excludes periods where the data has been rejected due to quality assurance/data validation procedures.

The data capture statistics for the reporting period 1st May to 31st May, 2013 are shown in Table 11. Averages were only collected for those periods where the 5 minute data constituted 75% data capture.

Section 7.3 provides further information on the reasons for invalid data periods.

Table 11: Data Capture Statistics - 1 Hour Averages

Parameter	Station	Collected Periods	Available Periods	Data Capture
DM	Eastern	741	744	99.6%
PM _{2.5}	Western	739	744	99.3%
	Eastern	737	744	99.1%
PM ₁₀	Western	738	744	99.2%
NO NO	Eastern	699	744	94.0%
NO, NO ₂	Western	712	744	95.7%
00	Eastern	697	744	93.7%
СО	Western	711	744	95.6%

7.2 Results

7.2.1 PM_{2.5}

 $PM_{2.5}$ was continuously monitored and 5 minute averages logged. The 5 minute average data was then transformed to 1 hour averages for reporting.

 $PM_{2.5}$ (1 hour average) mass rate of emission statistics for the reporting period are given in Table 12. A plot of $PM_{2.5}$ (1 hour average) mass rate of emission for the reporting period is presented in Figure 8.

Table 12: PM_{2.5} Mass Rate Percentiles (1 Hour Average)

Station	PM _{2.5} Mass Rate (kg/h) (1 Hour Average)								
Station	Maximum	99 th	98 th	95 th	90 th	75 th	50 th		
Eastern	0.35	0.26	0.24	0.20	0.18	0.14	0.055		
Western	0.44	0.26	0.25	0.19	0.15	0.11	0.047		

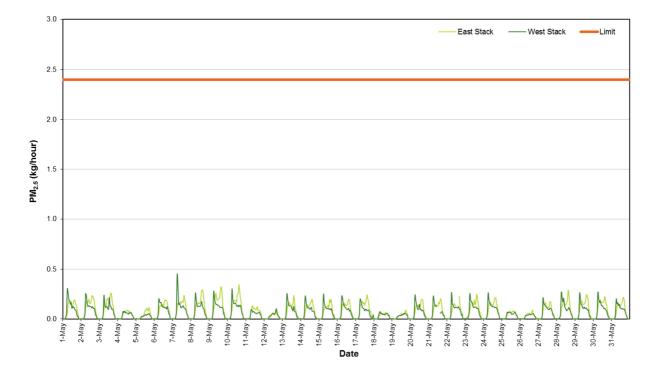


Figure 8: PM_{2.5} Mass Rate (1 Hour Average)

7.2.2 PM₁₀

 PM_{10} was continuously monitored and 5 minute averages logged. The 5 minute average data was then transformed to 1 hour averages for reporting.

 PM_{10} (1 hour average) mass rate of emission statistics for the reporting period are given in Table 13. A plot of PM_{10} (1 hour average) mass rate of emission for the reporting period is presented in Figure 9.

Table 13: PM₁₀ Mass Rate Percentiles (1 Hour Average)

Station)					
Otation	Maximum	99 th	98 th	95 th	90 th	75 th	50 th
Eastern	0.55	0.39	0.35	0.30	0.26	0.20	0.080
Western	0.88	0.50	0.44	0.33	0.26	0.17	0.076

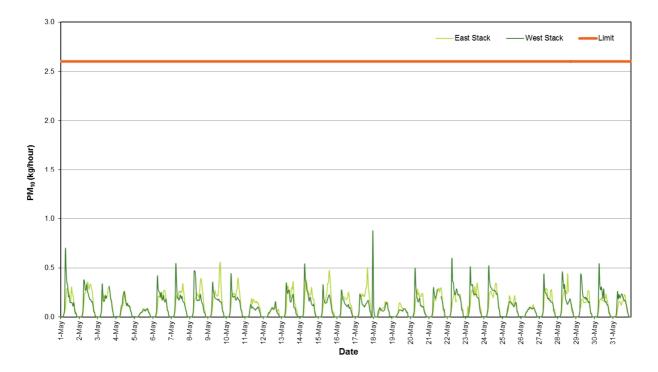


Figure 9: PM₁₀ Mass Rate (1 Hour Average)

7.2.3 Carbon Monoxide

Carbon monoxide (1 hour average) mass rate of emission statistics for the reporting period are given in Table 14. A plot of carbon monoxide (1 hour average) mass rate of emission for the reporting period is presented in Figure 10.

Table 14: Carbon Monoxide Mass Rate Percentiles (1 Hour Average)

Station	Carbon Monoxide Mass Rate (kg/h) (1 Hour Average)						
Otation	Maximum	99 th	98 th	95 th	90 th	75 th	50 th
Eastern	22	21	20	18	14	10	7.4
Western	27	23	21	17	14	11	7.7

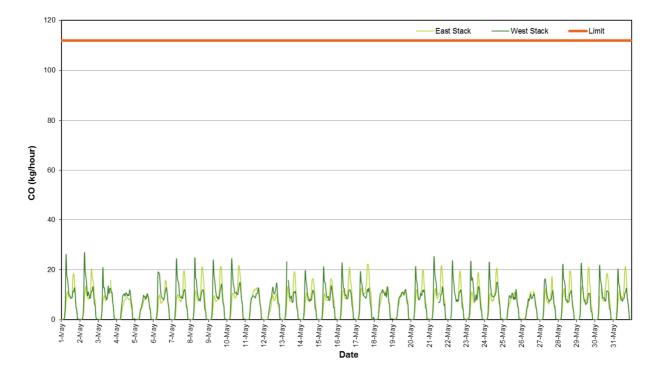


Figure 10: Carbon Monoxide Mass Rate (1 Hour Average)

7.2.4 Oxides of Nitrogen

7.2.4.1 Nitric Oxide

Nitric oxide (1 hour average) mass rate of emission statistics for the reporting period are given in Table 15. A plot of nitric oxide (1 hour average) mass rate of emission for the reporting period is presented in Figure 11.

Table 15: Nitric Oxide Mass Rate Percentiles (1 Hour Average)

Station		Nitric Oxide Mass Rate (kg/h) (1 Hour Average)								
Otation	Maximum	99 th	98 th	95 th	90 th	75 th	50 th			
Eastern	4.8	4.4	4.1	3.8	3.2	2.6	1.5			
Western	5.9	5.4	4.9	3.5	3.0	2.2	1.5			

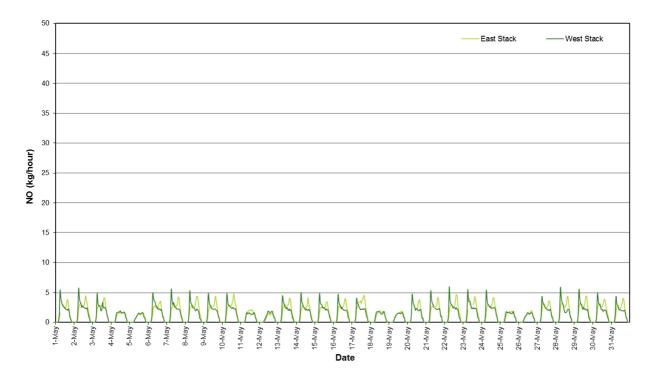


Figure 11: Nitric Oxide Mass Rate (1 Hour Average)

7.2.4.2 Nitrogen Dioxide

Nitrogen dioxide (1 hour average) mass rate of emission statistics for the reporting period are given in Table 16. A plot of nitrogen dioxide (1 hour average) mass rate of emission for the reporting period is presented in Figure 12.

Table 16: Nitrogen Dioxide Mass Rate Percentiles (1 Hour Average)

Station	Nitrogen Dioxide Mass Rate (kg/h) (1 Hour Average)								
Otation	Maximum	99 th	98 th	95 th	90 th	75 th	50 th		
Eastern	0.73	0.67	0.62	0.54	0.46	0.37	0.22		
Western	0.69	0.62	0.61	0.41	0.34	0.30	0.20		

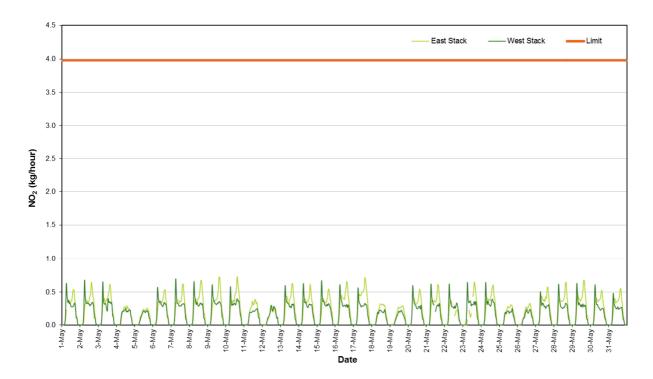


Figure 12: Nitrogen Dioxide Mass Rate (1 Hour Average)

7.2.5 Stack Velocity

The stack velocity (1 hour average) plot for the reporting period is presented in Figure 13.

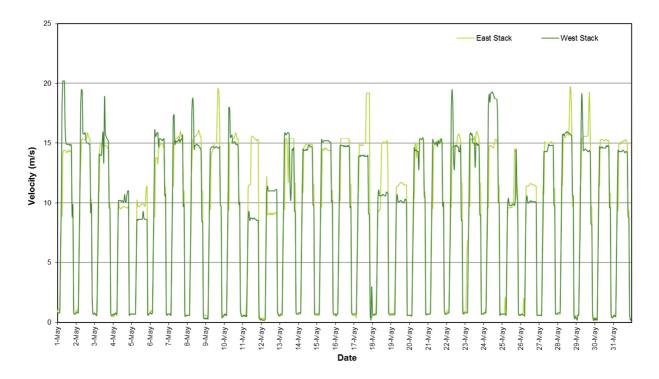


Figure 13: Stack Velocity (1 Hour Average)

7.3 Data Validation and Exceptions

Data contained in the report has been validated against performance and calibration requirements for each instrument. Data during maintenance and calibration periods has been removed from the validated data sets. Tables 17 and 18 list the data exceptions for the eastern and western ventilation stacks respectively. Data during automatic calibrations of the gaseous atmospheric contaminants has also been removed from the data sets.

Table 17: Data Exceptions - Eastern Ventilation Stack: May 2013

Start	End	Parameter	Reason
1/05/2013 7:30	1/05/2013 8:25	NO, NO ₂ , NO _x	Maintenance/calibration
3/05/2013 7:40	3/05/2013 7:50	со	Maintenance/calibration
3/05/2013 14:00	3/05/2013 15:20	со	Maintenance/calibration
13/05/2013 6:55	13/05/2013 7:10	СО	Maintenance/calibration
20/05/2013 0:40	20/05/2013 7:25	NO, NO ₂ , NO _x	Invalid data - Span drift
22/05/2013 0:40	22/05/2013 11:45	со	Invalid data - Span drift
22/05/2013 10:35	22/05/2013 10:45	NO, NO ₂ , NO _x	Maintenance/calibration
22/05/2013 11:25	22/05/2013 12:50	NO, NO ₂ , NO _x	Maintenance/calibration
22/05/2013 12:30	22/05/2013 12:50	со	Maintenance/calibration
22/05/2013 13:00	22/05/2013 15:50	PM _{2.5}	Maintenance/calibration
22/05/2013 13:10	22/05/2013 16:40	PM ₁₀	Maintenance/calibration
23/05/2013 7:35	23/05/2013 8:00	NO, NO ₂ , NO _x	Maintenance/calibration
23/05/2013 12:20	23/05/2013 12:50	NO, NO ₂ , NO _x	Maintenance/calibration
23/05/2013 12:30	23/05/2013 12:50	со	Maintenance/calibration
28/05/2013 8:00	28/05/2013 8:25	NO, NO ₂ , NO _x	Maintenance/calibration
28/05/2013 15:40	28/05/2013 16:20	PM ₁₀	Invalid data ¹
29/05/2013 4:55	29/05/2013 5:15	PM ₁₀ Invalid data ¹	
30/05/2013 7:10	30/05/2013 7:45	СО	Maintenance/calibration

Note: ¹ – In the opinion of the reviewer.

Table 18: Data Exceptions - Western Ventilation Stack: May 2013

Start	End	Parameter	Reason
3/05/2013 13:05	3/05/2013 14:55	PM ₁₀	Invalid data ¹
13/05/2013 6:50	13/05/2013 7:15	со	Maintenance/calibration
13/05/2013 11:00	13/05/2013 11:20	PM _{2.5}	Invalid data ¹
21/05/2013 10:55	21/05/2013 11:25	NO, NO ₂ , NO _x	Maintenance/calibration

21/05/2013 10:55	21/05/2013 11:50	со	Maintenance/calibration
21/05/2013 11:35	21/05/2013 14:40	PM _{2.5}	Maintenance/calibration
21/05/2013 11:55	21/05/2013 15:50	PM ₁₀	Maintenance/calibration
30/05/2013 11:25	30/05/2013 11:30	PM ₁₀	Invalid data ¹
31/05/2013 10:00	31/05/2013 10:10	PM ₁₀	Invalid data ¹

Note: 1 – In the opinion of the reviewer.

A number of periods occurred where $PM_{2.5}$ concentrations was greater than the corresponding PM_{10} concentration. If no valid reason was found to exclude the data, the data was left unchanged in the data set. Examples of such occurrences are listed below:

- East Ventilation stack 5/5/2013 12:40 18:50
- East Ventilation stack 17/5/2013 20:55 21:15
- West Ventilation stack 7/5/2013 06:50 07:10

8.0 VENTILATION STACK EMISSION MONITORING PERIOD: 01/06/2013 – 30/06/2013

8.1 Data Capture

Data capture is defined as the number of valid data periods collected divided by the number of available data periods. Valid data excludes periods where the instrument is unavailable due to calibration and maintenance and excludes periods where the data has been rejected due to quality assurance/data validation procedures.

The data capture statistics for the reporting period 1st June to 30th June, 2013 are shown in Table 19. Averages were only collected for those periods where the 5 minute data constituted 75% data capture.

Section 8.3 provides further information on the reasons for invalid data periods.

Table 19: Data Capture Statistics - 1 Hour Averages

Parameter	Station	Station Collected Periods Available Periods		Data Capture
D14	Eastern	719	720	99.9%
PM _{2.5}	Western	719	720	99.9%
PM ₁₀	Eastern	718	720	99.7%
	Western	720	720	100.0%
NO NO	Eastern	590	720	81.9%
NO, NO ₂	Western	686	720	95.3%
со	Eastern	686	720	95.3%
	Western	688	720	95.6%

8.2 Results

8.2.1 PM_{2.5}

 $PM_{2.5}$ was continuously monitored and 5 minute averages logged. The 5 minute average data was then transformed to 1 hour averages for reporting.

 $PM_{2.5}$ (1 hour average) mass rate of emission statistics for the reporting period are given in Table 20. A plot of $PM_{2.5}$ (1 hour average) mass rate of emission for the reporting period is presented in Figure 14.

Table 20: PM_{2.5} Mass Rate Percentiles (1 Hour Average)

Station	PM _{2.5} Mass Rate (kg/h) (1 Hour Average)								
Station	Maximum	99 th	98 th	95 th	90 th	75 th	50 th		
Eastern	0.40	0.25	0.21	0.18	0.15	0.12	0.039		
Western	0.43	0.26	0.24	0.17	0.14	0.10	0.041		

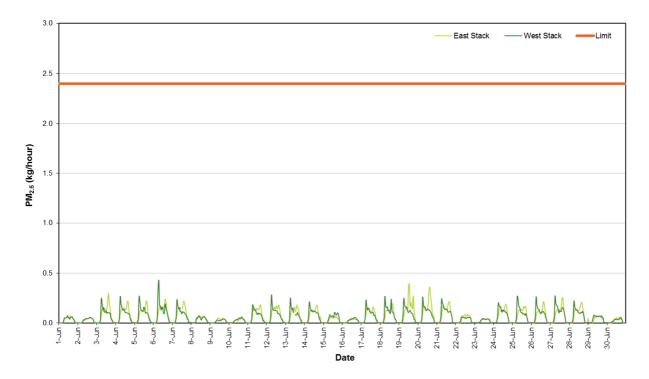


Figure 14: PM_{2.5} Mass Rate (1 Hour Average)

8.2.2 PM₁₀

 PM_{10} was continuously monitored and 5 minute averages logged. The 5 minute average data was then transformed to 1 hour averages for reporting.

 PM_{10} (1 hour average) mass rate of emission statistics for the reporting period are given in Table 21. A plot of PM_{10} (1 hour average) mass rate of emission for the reporting period is presented in Figure 15.

Table 21: PM₁₀ Mass Rate Percentiles (1 Hour Average)

Station	PM ₁₀ Mass Rate (kg/h) (1 Hour Average)								
Station	Maximum	99 th	98 th	95 th	90 th	75 th	50 th		
Eastern	0.54	0.37	0.33	0.27	0.23	0.16	0.059		
Western	1.3	0.62	0.46	0.32	0.23	0.16	0.071		

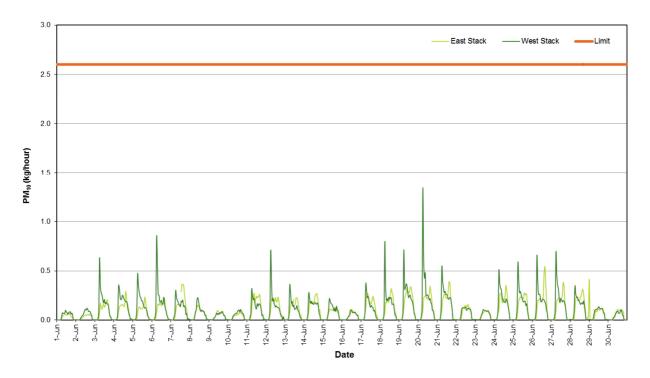


Figure 15: PM₁₀ Mass Rate (1 Hour Average)

8.2.3 Carbon Monoxide

Carbon monoxide (1 hour average) mass rate of emission statistics for the reporting period are given in Table 22. A plot of carbon monoxide (1 hour average) mass rate of emission for the reporting period is presented in Figure 16.

Table 22: Carbon Monoxide Mass Rate Percentiles (1 Hour Average)

Station	Carbon Monoxide Mass Rate (kg/h) (1 Hour Average)								
Station	Maximum	99 th	98 th	95 th	90 th	75 th	50 th		
Eastern	23	21	20	17	13	10	7.2		
Western	26	23	21	16	13	9.9	7.2		

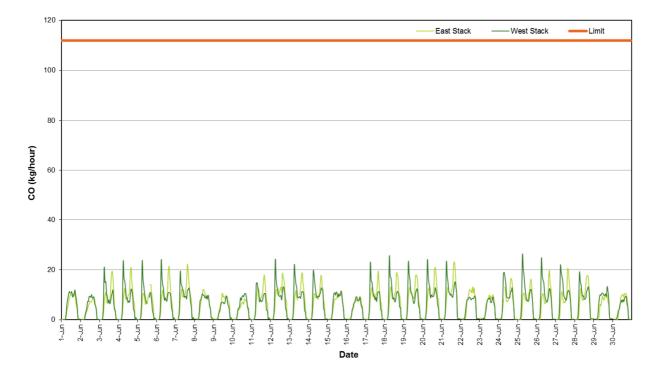


Figure 16: Carbon Monoxide Mass Rate (1 Hour Average)

8.2.4 Oxides of Nitrogen

8.2.4.1 Nitric Oxide

Nitric oxide (1 hour average) mass rate of emission statistics for the reporting period are given in Table 23. A plot of nitric oxide (1 hour average) mass rate of emission for the reporting period is presented in Figure 17.

Table 23: Nitric Oxide Mass Rate Percentiles (1 Hour Average)

Station	Nitric Oxide Mass Rate (kg/h) (1 Hour Average)								
Station	Maximum	99 th	98 th	95 th	90 th	75 th	50 th		
Eastern	4.6	4.1	3.9	3.3	2.9	2.4	1.1		
Western	6.0	5.4	4.5	3.4	2.8	2.1	1.2		

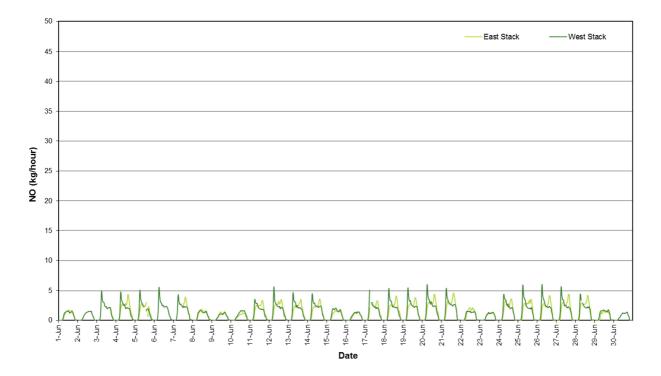


Figure 17: Nitric Oxide Mass Rate (1 Hour Average)

8.2.4.2 Nitrogen Dioxide

Nitrogen dioxide (1 hour average) mass rate of emission statistics for the reporting period are given in Table 24. A plot of nitrogen dioxide (1 hour average) mass rate of emission for the reporting period is presented in Figure 18.

Table 24: Nitrogen Dioxide Mass Rate Percentiles (1 Hour Average)

Station	Nitrogen Dioxide Mass Rate (kg/h) (1 Hour Average)								
Station	Maximum	99 th	98 th	95 th	90 th	75 th	50 th		
Eastern	0.69	0.62	0.60	0.52	0.45	0.36	0.19		
Western	0.68	0.61	0.54	0.38	0.33	0.27	0.16		

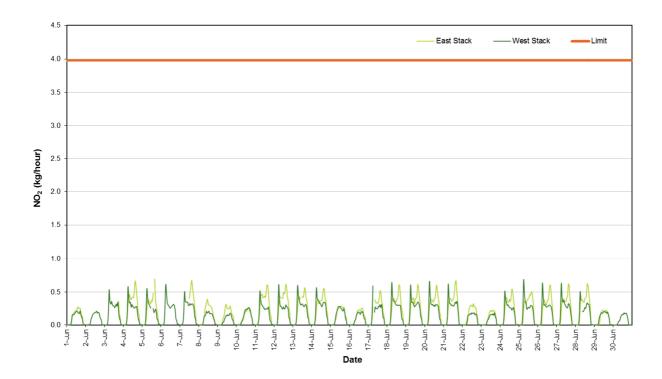


Figure 18: Nitrogen Dioxide Mass Rate (1 Hour Average)

8.2.5 Stack Velocity

The stack velocity (1 hour average) plot for the reporting period is presented in Figure 19.

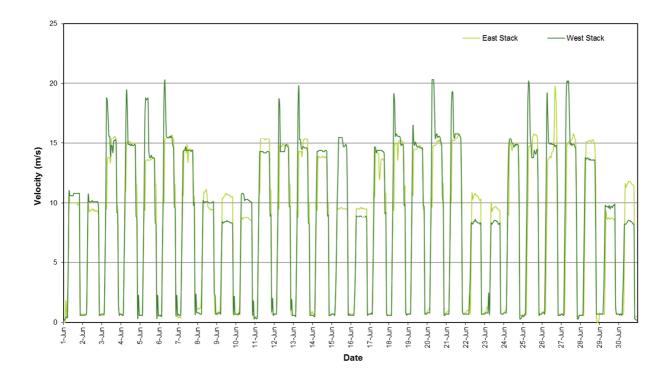


Figure 19: Stack Velocity (1 Hour Average)

8.3 Data Validation and Exceptions

Data contained in the report has been validated against performance and calibration requirements for each instrument. Data during maintenance and calibration periods has been removed from the validated data sets. Tables 25 and 26 list the data exceptions for the eastern and western ventilation stacks respectively. Data during automatic calibrations of the gaseous atmospheric contaminants has also been removed from the data sets.

Table 25: Data Exceptions - Eastern Ventilation Stack: June 2013

Start	End	Parameter	Reason
2/06/2013 0:40	3/06/2013 17:15	NO, NO ₂ , NO _x	Invalid data - Span drift
5/06/2013 15:15	5/06/2013 16:05	CO, NO, NO ₂ , NO _x	Maintenance/calibration
6/06/2013 0:40	7/06/2013 12:10	NO, NO ₂ , NO _x	Invalid data - Span drift
7/06/2013 12:25	7/06/2013 13:10	PM ₁₀ , PM _{2.5}	Invalid data ¹
12/06/2013 9:35	12/06/2013 9:45	со	Maintenance/calibration
13/06/2013 11:15	13/06/2013 11:40	CO, NO, NO ₂ , NO _x	Invalid data - Span drift
13/06/2013 11:50	13/06/2013 12:20	PM ₁₀	Invalid data ¹
15/06/2013 16:05	15/06/2013 16:25	СО	Invalid data - Span drift
17/06/2013 7:00	17/06/2013 7:30	NO, NO ₂ , NO _x	Maintenance/calibration
24/06/2013 6:50	24/06/2013 7:45	СО	Maintenance/calibration
28/06/2013 7:50	28/06/2013 8:10	CO	Maintenance/calibration
30/06/2013 0:40	30/06/2013 23:55	NO, NO ₂ , NO _x	Invalid data - Span drift
30/06/2013 7:45	30/06/2013 7:55	СО	Maintenance/calibration

Note: ¹ – In the opinion of the reviewer.

Table 26: Data Exceptions - Western Ventilation Stack: June 2013

Start	End	Parameter	Reason
5/06/2013 12:25	5/06/2013 13:20	NO, NO ₂ , NO _x	Maintenance/ calibration
5/06/2013 13:25	5/06/2013 15:00	со	Maintenance/ calibration
13/06/2013 10:45	13/06/2013 11:25	PM _{2.5}	Maintenance/ calibration
17/06/2013 6:55	17/06/2013 7:35	NO, NO ₂ , NO _x	Maintenance/ calibration
28/06/2013 7:45	28/06/2013 8:20	NO, NO ₂ , NO _x	Maintenance/ calibration

Note: ¹ – In the opinion of the reviewer.

A number of periods occurred where $PM_{2.5}$ concentrations was greater than the corresponding PM_{10} concentration. If no valid reason was found to exclude the data, the data was left unchanged in the data set. Examples of such occurrences are listed below:

- West Ventilation stack 18/6/2013 14:00 14:25
- East Ventilation stack 19/6/2013 12:30 13:35
- East Ventilation stack 19/6/2013 17:50 23:55
- East Ventilation stack 20/6/2013 13:40 15:45
- West Ventilation stack 7/5/2013 06:50 07:10

9.0 DISCUSSION

9.1 Comparison with Licence Limits

EastLink emissions to air from the road tunnel ventilation stacks DP1 and DP2 are subject to the licence requirements contained in Environment Protection Authority (Victoria) Environmental Licence No. 2043 (The Licence).

The maximum measured 1 hour average mass rate for each parameter is compared with the applicable licence limit in Table 27.

Table 27: Maximum (1 Hour Average) Mass Rate (01/04/2013 - 30/06/2013)

Table 27. Waz	Table 27. Maximum (1 Hour Average) Mass Rate (01/04/2013 - 30/00/2013)							
Discharge Point No.	Discharge Description	Compound	Mass Rate (kg/h)	Licence Limit (kg/h)				
1	Western ventilation stack	PM _{2.5}	0.46	2.4				
		PM ₁₀	1.3	2.6				
		NO ₂	0.69	3.98				
		CO	27	112				
2	Eastern ventilation stack	PM _{2.5}	0.40	2.4				
		PM ₁₀	0.59	2.6				
		NO ₂	0.73	3.98				
		СО	23	112				

There were no exceedences of the licence limits for DP1 and DP2 during the reporting period.

Data capture statistics for 2013 year to date (01/01/2013 – 31/06/2013) are presented in Table 28.

Table 28: Data Capture Year to Date (%)

Station	NO ₂	СО	PM _{2.5}	PM ₁₀	Velocity
Eastern	90.0	94.0	99.7	94.0	100
Western	95.6	96.9	99.6	99.7	100

The Licence contains a Bubble Limit which specifies the annual discharge limits of each parameter for each ventilation stack. Annual emission rates have been calculated from 1st July to 30th June to coincide with the Annual Performance Statement (APS). Ventilation stack emission rates year to date (1/07/2012 to 30/06/2013) are shown in Table 29.

Table 29: Ventilation Stack Emissions 1/07/2012 - 30/06/2013 (tonnes/year)

Station	NO ₂	СО	PM _{2.5}	PM ₁₀
Eastern	1.6	53	0.61	0.97
Western	1.3	54	0.61	0.92
Total	2.9	110	1.2	1.9
Limit	35	980	21	23

Figure 20 presents the ventilation stack emissions of each parameter as a percentage of the Licence limit compared with the percentage of APS reporting period elapsed.

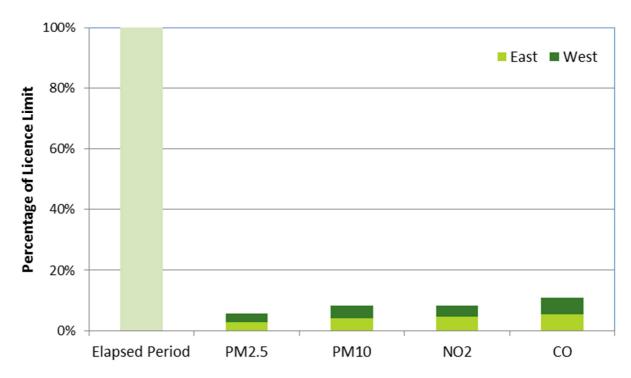


Figure 20: Ventilation Stack Emissions as Percentage of Licence Limit (1/07/2012 - 30/06/2013)

Report Signature Page

GOLDER ASSOCIATES PTY LTD

Mark Tulau

Senior Air Quality Specialist

M.D ful.

Frank Fleer

Principal Air and Noise Group

MT/FEF/mdt

A.B.N. 64 006 107 857

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

 $j:\env\2009\097613024-east link\ stack\correspondence\correspondence\ out\end{097613024-030-r-rev}. docx$

APPENDIX A

Limitations

LIMITATIONS

This Document has been provided by Golder Associates Pty Ltd ("Golder") subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Golder's proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Golder's Services are as described in Golder's proposal, and are subject to restrictions and limitations. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Golder in regards to it.

Conditions may exist which were not detected given the limited nature of the enquiry Golder was retained to undertake with respect to the site. Variations in conditions may occur between assessment locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Golder's opinions are based upon information that existed at the time the information is collected. It is understood that the Services provided allowed Golder to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments, designs, and advice provided in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Golder for incomplete or inaccurate data supplied by others.

Golder may have retained subconsultants affiliated with Golder to provide Services for the benefit of Golder. To the maximum extent allowed by law, the Client acknowledges and agrees it will not have any direct legal recourse to, and waives any claim, demand, or cause of action against, Golder's affiliated companies, and their employees, officers and directors.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Golder accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.

Golder Associates Pty Ltd GAP Form No. LEG04 RL1

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Pty Ltd Building 7, Botanicca Corporate Park 570 – 588 Swan Street Richmond, Victoria 3121 Australia

T: +61 3 8862 3500

